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ABSTRACT

A novel illumination invariant unsupervised multispectral

texture segmentation method with unknown number of classes

is presented. Multispectral texture mosaics are locally rep-

resented by illumination invariants derived from four direc-

tional causal multispectral Markovian models recursively

evaluated for each pixel. Resulted parametric space is seg-

mented using a Gaussian mixture model based unsupervised

segmenter. The segmentation algorithm starts with an over

segmented initial estimation which is adaptively modified

until the optimal number of homogeneous texture segments

is reached. The performance of the presented method is ex-

tensively tested on the large illumination invariant benchmark

from the Prague Segmentation Benchmark using 21 segmen-

tation criteria and compares favourably with an alternative

segmentation method.

Index Terms— Unsupervised image segmentation, illu-

mination invariance.

1. INTRODUCTION

Segmentation is the fundamental process which affects the

overall performance of any automated image analysis system.

Image regions, homogeneous with respect to some usually

textural or colour measure, which result from a segmenta-

tion algorithm are analysed in subsequent interpretation steps.

Realistic applications of these segmenters often have to deal

with variable illumination of the segmented scene. Texture-

based image segmentation is an area of intense research ac-

tivity in recent years and many algorithms were published

in consequence of all this effort. These methods are usually

categorised [1] as region-based, boundary-based, or as a hy-

brid of the two. Different published methods are difficult to

compare because of lack of a comprehensive analysis together

with accessible experimental data, however available results

indicate that the ill-defined texture segmentation problem is

still far from being satisfactorily solved. Spatial interaction

models and especially Markov random fields-based models

are increasingly popular for texture representation [1, 2, 3],

etc. Several researchers dealt with the difficult problem of
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unsupervised segmentation using these models see for exam-

ple [4, 5, 6, 7, 8] or [12] which is also addressed in this paper.

The outline of this paper is as follows. Section 2 presents our

illumination invariant Markovian multispectral texture repre-

sentation. Section 3 outlines the unsupervised segmenter, fol-

lowed by the experimental verification in the subsequent sec-

tion 4 and concluding section 5.

2. TEXTURE MODEL

Multispectral static smooth textures require three dimensional

(3D) models for adequate representation. We assume that

single multispectral textures can be locally modelled using

a 3D simultaneous causal autoregressive random field model

(AR3D). This model can be expressed as a stationary causal

uncorrelated noise driven 3D autoregressive process [9]:

Yr = γXr + er , (1)

where γ = [A1, . . . , Aη] is the d × dη parameter matrix,

d is the number of spectral bands, Ic
r is a causal neigh-

borhood index set with η = card(Ic
r) and er is a white

Gaussian noise vector with zero mean and a constant but un-

known covariance, Xr is a corresponding vector of the con-

textual neighbours Yr−s and r, r − 1, . . . is a chosen direc-

tion of movement on the image index lattice I . The selection

of an appropriate AR3D model support (Ic
r ) is important to

obtain good texture representation for realistic texture syn-

thesis but less important for adequate texture segmentation.

The optimal neighbourhood as well as the Bayesian param-

eters estimation of a AR3D model can be found analytically

under few additional and acceptable assumptions using the

Bayesian approach (see details in [9]). The AR3D model re-

cursive Bayesian parameter estimator is [9]:

γ̂T
r−1 = γ̂T

r−2 +
V −1

x(r−2)Xr−1(Yr−1 − γ̂r−2Xr−1)T

(1 + XT
r−1V

−1
x(r−2)Xr−1)

, (2)

where Vx(r−1) =
∑r−1

k=1 XkXT
k + Vx(0). Local texture for

each pixel is represented by four parametric vectors. Each

vector contains local estimations of the AR3D model invari-

ants. These models have identical contextual neighbourhood
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Ic
r but they differ in their major movement direction (top-

down, bottom-up, rightward, leftward), i.e.,

γ̃T
r = {γ̂t

r, γ̂
b
r , γ̂

r
r , γ̂l

r}T . (3)

2.1. Illumination Invariants

We assume that the two images Ỹ , Y acquired with differ-

ent illumination can be linearly transformed to each other:

Ỹr = B Yr, where Ỹr, Yr are multispectral pixel values at

position r and B is a d× d transformation matrix. This lin-

ear relation holds for changes in brightness and illumination

spectrum with Lambertian surface reflectance, or for a model

which includes specular reflectance component. Using above

assumption we derived [10] the illumination invariance of

1. trace: tr Am, m = 1, . . . , η

2. eigenvalues: ζm,j of Am, m = 1, . . . , η,
j = 1, . . . , d .

The parametric space γ̃ is subsequently transformed into the

illumination invariant parametric space γ̄:

γ̄T
r =

[
tψ, bψ, rψ, lψ

]T
, (4)

αψ = [αζ1,1, . . . ,
αζη,d, tr αA1, . . . , tr αAη]

α ∈ {t, b, r, l} .

Finally we add the local ar, br components of the Lab colour

coordinates to the resulting feature vector (Θr).

3. MIXTURE BASED SEGMENTATION

Multi-spectral texture segmentation is done by clustering in

the AR3D parameter space Θ defined on the lattice I where

Θr = [γ̄r, ar, br]T

is the modified illumination invariant parameter vector (3)

computed for the lattice location r. We assume that this para-

metric space can be represented using the Gaussian mixture

model (GM) with diagonal covariance matrices. The Gaus-

sian mixture model for AR3D parametric representation is as

follows:

p(Θr) =
K∑

i=1

pi p(Θr | νi, Σi) , (5)

p(Θr | νi, Σi) =
|Σi|− 1

2

(2π)
d
2

e−
(Θr−νi)

T Σ−1
i

(Θr−νi)
2 . (6)

The mixture model equations (5),(6) are solved using a

modified EM algorithm. The algorithm is initialised using

νi, Σi statistics estimated from the corresponding rectangu-

lar subimages obtained by regular division of the input texture

mosaic. An alternative initialisation can be random choice

of these statistics. For each possible couple of rectangles the

Kullback Leibler divergence

D (p(Θr | νi, Σi) || p(Θr | νj , Σj)) =∫
Ω

p(Θr | νi, Σi) log
(

p(Θr | νi, Σi)
p(Θr | νj , Σj)

)
dΘr (7)

is evaluated and the most similar rectangles, i.e.,

{i, j} = arg min
k,l

D (p(Θr | νl, Σl) || p(Θr | νk, Σk))

are merged together in each step. This initialization re-

sults in Kini subimages and recomputed statistics νi, Σi .

Kini > K where K is the optimal number of textured

segments to be found by the algorithm. Two steps of the EM

algorithm are repeating after initialisation. The components

with smaller weights than a fixed threshold (pj < 0.1
Kini

)

are eliminated. For every pair of components we estimate

their Kullback Leibler divergence (7). From the most simi-

lar couple, the component with the weight smaller than the

threshold is merged to its stronger partner and all statis-

tics are actualised using the EM algorithm. The algorithm

stops when either the likelihood function has negligible in-

crease (Lt − Lt−1 < 0.05) or the maximum iteration num-

ber threshold is reached.

The parametric vectors representing texture mosaic pixels

are assigned to the clusters according to the highest compo-

nent probabilities, i.e., Yr is assigned to the cluster ωj if

πr,j = maxj

∑
s∈Ir

ws p(Θr−s | νj , Σj) ,

where ws are fixed distance-based weights, Ir is a rectan-

gular neighbourhood and πr,j > πthre (otherwise the pixel

is unclassified). The area of single cluster blobs is evaluated

in the post-processing thematic map filtration step. Regions

with similar statistics are merged. Thematic map blobs with

area smaller than a given threshold are attached to its neigh-

bour with the highest similarity value.

4. EXPERIMENTAL RESULTS

The algorithm was tested on natural colour textures mosaics

from the Prague Texture Segmentation Data-Generator and

Benchmark [11]. The benchmark test mosaics layouts and

each cell texture membership are randomly generated and

filled with colour textures from the large Prague colour tex-

ture database. The benchmark ranks segmentation algorithms

according to a chosen criterion. There are implemented

twenty seven most frequented evaluation criteria [11] cate-

gorised into four groups: region-based (5+5), pixel-wise (12),

consistency measures (2) and clustering comparison criteria

(3). Tab.1 compares the overall benchmark performance

of the proposed algorithm (AR3D+EM ii) with its non illu-

mination invariant version (AR3D+EM [12]) and the HGS
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Benchmark – Colour (Illum. Inv.)

AR3D+EM

ii

AR3D+EM

[12]

HGS E

[13]

HGS C

[13]
↑ CS 40.70 34.14 9.55 9.17

↓ OS 53.02 53.33 19.30 12.80

↓ US 16.76 13.29 30.05 37.48

↓ ME 13.96 20.12 39.72 38.41

↓ NE 14.85 20.57 39.64 35.36

↓ O 35.17 31.53 56.44 68.87

↓ C 91.72 95.34 60.20 51.63

↑ CA 59.15 57.87 40.20 35.81

↑ CO 65.72 64.76 53.61 50.70

↑ CC 86.36 87.17 62.45 60.67

↓ I. 34.28 35.24 46.39 49.30

↓ II. 3.83 3.52 12.11 16.15

↑ EA 68.26 68.15 51.44 46.22

↑ MS 56.91 57.23 34.80 28.32

↓ RM 5.89 4.78 12.93 16.63

↑ CI 71.32 71.40 54.22 50.03

↓ GCE 14.34 16.99 25.36 21.31

↓ LCE 7.62 8.64 16.69 12.23

↓ dM 16.58 14.64 29.18 38.39

↓ dD 19.82 20.27 29.21 29.82

↓ dVI 15.80 16.75 13.98 12.61

Table 1. Benchmark criteria (see details in

http://mosaic.utia.cas.cz): CS = correct segmentation;

OS = over-segmentation; US = under-segmentation; ME =

missed error; NE = noise error; O = omission error; C =

commission error; CA = class accuracy; CO = recall - correct

assignment; CC = precision - object accuracy; I. = type I

error; II. = type II error; EA = mean class accuracy estimate;

MS = mapping score; RM = root mean square proportion

estimation error; CI = comparison index; GCE = Global

Consistency Error; LCE = Local Consistency Error; dM =

Mirkin metric; dD = Van Dongen metric; dVI = variation of

information;

method [13] in it both fully illumination invariant version

C and the non illumination invariant version E, respectively.

The HGS segmenter combines the K-means clustering with

region merging step. It uses a Gabor-Gaussian spatial-colour

texture representation and its illumination invariant C ver-

sion uses features derived from the Gabor filters applied to

log-transformed images. Our results demonstrate very good

performance on all criteria with the exception of oversegmen-

tation tendency and slightly worse variation of information

criterion. The important correct region segmentation criterion

is four times better than for the HGS method, undersegmen-

tation is low as well as missed and noise errors. Our illu-

mination invariant segmenter outperforms its non–invariant

counterpart as expected, however the same conclusion cannot

be claimed for the HGS method. Fig.1 shows three selected

512 × 512 experimental benchmark mosaics created from

three to eleven natural colour textures. The last four columns

demonstrate comparative results from two alternative meth-

ods, both in illumination invariant and non-invariant versions,

respectively. Hard natural textures were chosen for compari-

son rather than synthesised (for example using the generative

AR3D model or some other Markov random field model)

ones because they are expected to be more difficult for the

underlying segmentation model. The third column demon-

strates robust behaviour of our algorithm but also infrequent

algorithm failures producing the oversegmented thematic

map for some textures. Such failures can be reduced by a

more elaborate postprocessing step. The HGS-C [13], HGS-

E [13] algorithms on these data performed steadily worse as

can be seen in the last two columns of Fig.1, some areas are

undersegmented while other parts of the mosaics are overseg-

mented. Resulting segmentation results are promising even

if we could compare only one illumination invariant alter-

native method. However we did extensive verification and

comparison of our non-invariant AR3D+EM method with 22

other leading unsupervised segmenters with very good results

(see details in http://mosaic.utia.cas.cz). Our results can be

easily further improved by an appropriate more elaborate

postprocessing.

5. CONCLUSIONS

We proposed novel efficient and robust method for illumi-

nation invariant unsupervised texture or image segmentation

with unknown number of classes based on the underlying

AR3D local image representation and and Gaussian mixture

parametric space models. Although the algorithm uses the

random field type model it is very fast because it uses effi-

cient recursive parameter estimation of the model and there-

fore is much faster than the usual Markov chain Monte Carlo

estimation approach. Segmentation methods typically suffer

with lot of application dependent parameters to be experimen-

tally estimated. Our method requires only a contextual neigh-

bourhood selection and two additional thresholds. The algo-

rithm’s performance is demonstrated on the extensive bench-

mark tests on natural texture mosaics. It performs favourably

compared with the alternative HGS segmentation algorithm

and it is faster than our previously published [8] GMRF-GM

method. These test results are encouraging and we proceed

with more elaborate postprocessing and some modification of

the texture representation model.

6. REFERENCES

[1] Todd R. Reed and J. M. Hans du Buf, “A review of

recent texture segmentation and feature extraction tech-

niques,” CVGIP–Image Understanding, vol. 57, no. 3,

pp. 359–372, May 1993.

[2] R.L. Kashyap, “Image models,” in Handbook of Pattern

4027



mosaic ground truth AR3D+EM ii AR3D+EM HGS E HGS C

Fig. 1. Selected experimental texture mosaics, ground truth from the benchmark and the corresponding segmentation results.
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